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1 Introduction

Simulating how blood flows through the human circulatory system is essential in the field of
medicine. Simulations of this natural flow can give researchers information on how medicine
is distributed through the body. This can help researchers in the field with designing specific
treatments that will improve upon patient care. In order to accomplish this simulation,
the finite difference method is used. From using this approach, we were able to simulate a
one-dimensional simulation of a blood vessel through the use of MATLAB.

2 The Circulatory System

Before we get into any mathematical equations, it is important to know how the human
circulatory system works in order to simulate the flow using math. Blood is made up of
two components, cells and plasma. The blood cells float in the plasma which is the liquid
portion of the blood. Components such as nutrients, hormones and proteins lie within the
plasma. The plasma disperses these substances as it circulates throughout the body. The
cell portion of the blood contains white and red blood cells as well as platelets.

The circulatory system is made up of arteries, arterioles, capillaries, veins, and the heart.
Blood will travel from the aorta through a progression of blood vessels until it reaches
the capillaries. However, before the blood can reach the capillaries, it travels through the
arterioles where the speed and pressure is constantly changing due to different conditions in
the body. By the time the blood reaches the capillaries it is no longer pulsing but flowing
continuously. As the blood passes through the capillaries, it acquires waste and the supply is
oxygen is thus reduced. From there, the blood enters venules and then the veins and travels
back to the heart to restart the process.

3 Womersley Number

The Womersley number is a dimensionless number involved in biofluid mechanics and deals
with pulsatile flow frequency. The Womersley number is denoted as α and is written as:

α = R
(ω
v

) 1
2

= R

(
ωρ

µ

) 1
2

R = appropriate length scale
ω = angular frequency of oscillations
v, ρ, µ = kinematic viscosity. density, and dynamic viscosity of the fluid

The Womersley number comes up in the solution of the Navier-Stokes equations. It indi-
cates the ratio of the oscillatory inertia force to the shear force. In the blood vessel network,
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parameters such a frequency, density, and dynamic viscosity stay the same throughout, ex-
cept the tube radii changes. The Womersley number is large in large vessels and small in
small vessels.

4 Navier-Stokes Equations

The Navier-Stokes equations are nonlinear partial differential equations that describe the
motion of fluid substances. These equations come from applying Newton’s second law to fluid
motion. Newton’s second law states that the rate of change of momentum is proportional to
the imposed force and goes in the direction of the force. Besides being useful in the study of
blood flow, the Navier-Stokes equations can also help things such as the design of cars and
aircrafts, and analysis of pollution. The Navier-Stokes equation dictates velocity of fluid at
a given point in space. When the velocity is solved, other quantities such as flow rate can
be found.

Isaac Newtons second law (conservation of momentum) shows us that Force is equal to
mass times acceleration (F = ma). From Newtons second law, we know that net force
and mass are the two main influences of acceleration. The more force you have the faster
the acceleration and the more mass you have the slower the acceleration. Friction works
in opposition to acceleration. Applying this to fluids, the friction comes from the fluid
resistance and the fluid pressure. The force created by the fluid and the mass of the fluid are
also taken into account. By applying the notions of Newtons second law to fluid motion, we
find it easier to describe the characteristics of fluids such as blood in terms of mathematics.

The Navier-Stokes equations has immense influence on science and engineering because of
its usage in many practical problems, but the theory behind Navier-Stokes equations remain
unsolved, mainly in the idea of turbulence which is the time dependant random behavior seen
in fluid motion. We need to work around this problem by using a simplified Navier-Stokes
equation that is supplemented by the equations derived from the conservation of mass and
the equations found for the boundary conditions of our given problem.

4.1 Equation

The general form of the Navier-Stoke equations that is used to model blood flow is expressed
as:

ρ
δu

δt
+ ρ (µ ∗ 5)µ− v4+5 p = f (1)

5 ∗ u = 0 (2)

where,
ρ = density of the fluid (g/cm3)
v = viscosity of the fluid (g/(cm2 ∗ sec))
p = p(x, y, t) = pressure at the point (x, y) at time t(g/(cm ∗ sec2)
f = any external forces acting on the fluid
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Equation (1) is a form of the momentum equation while equation (2) is a volume con-
tinuity equation that was simplified from the mass continuity equation. The two equations
can be written in component form as:

ρ
δu

δt
+ ρ

(
δ(u2)

δx
+
δ(uv)

δy

)
− v

(
δ2u)

δx2
+
δ2(u)

δy2

)
+
δρ

δx
= f1

ρ
δv

δt
+ ρ

(
δ(uv)

δx
+
δ(v2)

δy

)
− v

(
δ2v)

δx2
+
δ2(v)

δy2

)
+
δρ

δy
= f2

δu

δx
+
δv

δy
= 0

where f = (f1(x, y, t), f2(x, y, t))T.

5 Finite Difference Method

In order to accurately model blood flow, we will use the finite difference method. The Navier-
Stokes equations will provide us with a system of nonlinear partial differential equations for
blood flow and the cross-sectional area of an artery. We then will use the finite difference
method to solve the equations numerically. Using these results we will be able to accurately
monitor the finite changes in blood flow. This method incorporates the nonlinear effects
in larger vessels with the effects in smaller vessels as well as arterial capillaries. Finite
difference methods are used in mathematical analysis to accurately approximate the solutions
to differential equations. To use this method to solve a problem, the domain must be divided
into a uniform grid in a ”time-stepping. The method is then manipulated manner.

5.1 Implicit Finite Difference Method

Using explicit finite difference, we would have an equation assigned for the branch at one
step in time and this would be solved to figure out future steps. In implicit finite difference,
we are going in more depth by solving the equations for a number of parts of the branch in
order to figure out the necessary values for that time domain so we can use it to solve the
values for future time domains.

6 Numerical Scheme

To simulate one branch of the blood stream, we will need to find the flow rate (q) and cross
sectional area (A) for a section of points along the branch and then repeat this from one
time level to the next. The section of points will be our sample size (k) and we will keep
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this number at 100 for our purposes. Though, the higher the sample size the more accurate
the calculation results.

There are a few equations that are crucial in making this one-dimensional simulation.
The equations for flow and pressure can be expressed through the conservation of mass and
momentum as:

∂q

∂t
+
∂q

∂x
= 0

∂q

∂t
+

∂

∂x

(
4

3

q2

A

)
+
A

ρ

Estath0
R0A0

∂A

∂x
= −8πv

q

A
+ v

∂2q

∂x2

where,
A = cross-sectional area
q = flow rate
ρ =density
Estat = static Young’s Modulus
h = wall thickness
R0 = original radius of vessel
H0 - orginial wall thickness
A0 = original cross-sectional area

From these equations we can derive the equations we need to find to create a system of
equations that we will put into matrix form to be solved in MATLAB.

(−0.25k)qn+1
m−1 + An+1

m + (0.25k)qn+1
m+1 = F1 (3)

(−0.25bk)An+1
m−1 + (−0.25ak − 0.5ξd)qn+1

m−1 + (1 + ξd)qn+1
m

+(0.25bk)An+1
m+1 + (0.25ak − 0.5ξd)qn+1

m+1 = F2 (4)
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where,

k =
4t
4x

, ξ =
4t
4x2

, F1 = (0.25k)qnm−1 + An
m + (−0.25k)qnm+1

F2 =c+ (0.25bk)An
m−1(0.25ak + 0.5ξd)qnm−1 + (1− ξd)qnm

+ (−0.25bk)An
m+1 + (−0.25ak + 0.5ξd)qnm+1

Equations (3) and (4) are the main equations we need for our numerical analysis. For
our system of equations we still need the boundary condition equations that are required for
us to simulate blood flow.

The following equations are for the inlet boundary conditions, which are the conditions
for the start of the branch.

An+1
1 + (0.5k)qn+1

2 = An
1 + (0.5k)(qn1 − qn2 − qn+1

1 ) (5)

An+1
2 + (0.25k)qn+1

3 = An
2 + (0.25k)(qn1 − qn3 − qn+1

1 ) (6)

(−0.25bk)An+1
1 + (1 + ξd)qn+1

2 + (0.25bk)An+1
3 + (0.25ak − 0.5ξd)qn+1

3

−c+ (0.25bk)An
1 + (0.25ak + ξd)qn1 + (1− ξd)qn2 + (−0.25bk)An

3

+(−0.25ak + ξd)qn3 + (0.25ak + 0.5ξd)qn+1
1 (7)

The conditions for the end of the branch are given by the following set of equations:

(−0.5k)qn+1
M−1 + An+1

M + (0.5k)qn+1
M = (0.5k)qnM−1 + An

M + (−0.5k)qnM (8)

qn+1
M − pn+1

M y0M 4 t =
n∑

k=1

pn−kM ykM 4 t (9)

For the purpose of our MATLAB simulation we will simplify equation (9) to be:

Qn+1
m −Qn+1

1 = 0

This equation shows that the last value of Q minus the first value of Q would be equal to 0.
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Taking these equations we can put them into a matrix.

Equations : 5 6 7
Equations : 3 4
Equations : 8 9





A1 = x1
A2 = x2

...
Ak−1 = xk−1
Ak = xk
q2 = xk+1

q3 = xk+2
...

qk−1 = x2k−2
qk = x2k−1


=
(
RHS

)
(10)

For every sample k of the branch, we need to solve for an Ak and a Qk. Therefore, if
there are k samples then there will k variables of A and k variables of Q that we need to
find. This equals to a total of 2k variables. For this blood flow problem, the value of Qn+1

1 is
given so there will actually be 2k−1 variables that we need to solve for. To solve a system of
equations in a matrix, we need to put all these variables in one left hand side (LHS) matrix
and then multiply it by another matrix that is 2k − 1 by 2k − 1 numbers large.

Rows 1 to 3 of this matrix describe the inlet conditions. While rows 4 to 2k − 3 will be
the main body equations for the branch. Rows 2k − 2 and 2k − 1 correspond to the outlet
conditions derived from equations (8) and (9). The main body will have 2k − 6 equations
since (2k − 6) + 3 + 2 = 2k − 1.

Coordinate Forms of Matrix:

For row 1-3 (Inlet Condition Equations 5,6, and 7):

1st row =


(Mat)1,1 = 1
(Mat)1,k+1 = k

2

(Mat)1,j = 0forj 6= 1, k + 1

2nd row =


(Mat)2,2 = 1
(Mat)2,k+2 = k

4

(Mat)2,j = 0forj 6= 2, k + 2
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3rd row =


(Mat)3,1 = − bk

4

(Mat)3,k+1 = 1 + εd
(Mat)3,3 = bk

4

(Mat)3,k+2 = ak
4
− εd

2

(Mat)3,j = 0forj 6= 1, 3, k + 1, k + 2

For row 4 to 2k − 3 (Main equations 3 and 4):

4th row =


(Mat)4,1 = 1
(Mat)4,k+1 = k

4

(Mat)4,j = 0forj 6= 1, k + 1

5th row =


(Mat)5,2 = 1
(Mat)5,k+2 = k

4

(Mat)5,j = 0forj 6= 2, k + 2

6th row =


(Mat)6,3 = 1
(Mat)6,k+1 = −k

4

(Mat)6,k+3 = k
4

(Mat)6,j = 0forj 6= 3, k + 1, k + 3

...

kth row =


(Mat)k,k−3 = 1
(Mat)k,k+(k−5) = −−k

4

(Mat)k,k+(k−3) = k
4

(Mat)k,j = 0forj 6= 3, k + 1, k + 3
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k + 1 row =


(Mat)k+1,2 = bk

4

(Mat)k+1,k+1 = ak
4
− εd

2

(Mat)k+1,j = 0forj 6= 2, k + 1

k + 2 row =


(Mat)k+2,1 = −bk

4

(Mat)k+2,k+1 = 1 + εd
(Mat)k+2,3 = bk

4

(Mat)k+2,k+2 = ak
4
− εd

2

(Mat)k+2,j = 0forj 6= 1, 3, k + 1, k + 2

k + 3 row =



(Mat)k+3,2 = − bk
4

(Mat)k+3,k+1 = −ak
4
− εd

2

(Mat)k+3,k+2 = 1 + εd
(Mat)k+3,4 = bk

4

(Mat)k+3,k+3 = ak
4
− εd

2

(Mat)k+3,j = 0forj 6= 2, 4, k + 1, k + 2, k + 3

...

For row 2k − 2 and 2k − 1 (Outlet Condition Equations 8 and 9):

2k− 2 row =


(Mat)2k−2,2k−2 = −k

2

(Mat)2k−2,k = 1
(Mat)2k−2,2k−1 = k

2

(Mat)2k−2,j = 0forj 6= 2k − 2, 2k − 1, k

2k− 1 row =

{
(Mat)2k−1,2k−1 = 1
(Mat)2k−1,j = 0forj 6= 2k − 1
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6.1 Right-Hand Side for Numerical Matrix

B4out = 1An
1 +

k

2
qn1 −

k

2
qn2 +

k

2
qn+1
1

B5out = 1An
2 +

k

4
qn1 −

k

4
qn3 +

k

4
qn+1
1

B6out = c+
bk

4
An

1 + (
ak

4
+ ξd)qn1 + (1− ξd)qn2 (

−bk
4

)An
3 + (−0.25ak+ ξd)qn3 +

ak

4
+ (

ξd

2
)qn+1

1

7 MATLAB

In order to use MATLAB to solve our system of equations, we had to put them into matrix
form. In this form, the MATLAB program can understand our problem so we can create a
script file that will simulate solutions to the matrices. These solutions will go into helping
us simulate a branch of the circulatory system. The MATLAB program will the solve the
matrix of equations in equation M1. It will take a user input for a sample size which will
be term k. The sample size k is the number of equidistant points on the branch that our
program will solve to find the Ak and Qk of that point k in the branch. After working out
the equations by hand and organizing them in coordinate form as seen in the Numerical
Scheme section. We were able to observe the patterns we need to automate the process in a
MATLAB script file.

7.1 The Backslash Function

The Backslash function (\) in MATLAB is a matrix left division that allows us to divide
matrices with uneven column lengths. This function is useful for solving equations inAx = b
form where we have a matrix for A and a matrix for b and we want to solve for x. We can do
this by making x = A\b. For our matrix, we will label A as LHS (left-hand side matrix) and
b as RHS (right-hand side matrix), so the matrix we will solve would be LHS∗x = RHS and
x = LHS\RHS. If the backslash function fails to give us any results then we can try to use
the pinv function: x = pinv(LHS)∗RHS. The pinv function stands for pseudoinverse,.This
function produces a matrix x of the same dimensions as LHS) ∗RHS ′.

7.2 Symbolic Matrix Program

To make sure the matrices are correct, a symbolic matrix program was first created in order
to test whether or not we were getting the proper patterns in our matrices (See source code
in Appendix A). The patterns were discovered by taking the derived equations and working
them out by hand by inputting a value m from 1 to k until we were able to decipher a
coherent diagonal pattern which we should see in such a numerical scheme. From equation
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(3) we were able to find a diagonal pattern of ones as described in working out rows 4 to row
k for a smaller sample size then intended for the graph. We only needed to sample m = 1
to m = 5 to get a good idea of the pattern since this will continue for a infinite number
k. From equation (4) we were able to decipher a diagonal pattern of a symbolic numerical
value bk

4
and −bk

4
. The values for the RHS matrix given from the inlet and outlet condition

equations validate the diagonal patterns from equations (3) and (4).

8 Preliminary Results

Using the symbolic matrix and adding in the all the given values, we would be able to use
the script file to find the solutions. Specifically we need to find the values for A1 to Ak and
Q2 to Qk .

The given values include:
Estat = 7 ∗ 106 dyn/cm2

kinematic viscosity (v) = 1.1cP
density (ρ) = 1 g/cm3

K = 4t
4x

4x = 0.05cm
4t = 2 ∗ 10−3

q1 = 68 ∗ 10−3 l/min
E = 4t

4x2

a = (8
3
) ∗ n( q

A
)

b = (−4
3

) ∗ ( q
A
2)

c = −8 ∗ π ∗ v ∗ ( q
A

)
d = v
original wall thickness (h0) = 6, 000 ∗ 10−9m
original radius (R0) = 2209 ∗ 10−9m
original area (A0) = 1.533 ∗ 10−11m

Using the backslash function gave us the error:
Warning: Matrix is singular to working precision.

This means that our system of equations may not have a solution for LHS ∗ x = RHS.
To troubleshoot this problem we can work around it by using the pinv function in MAT-
LAB. So we can come with the solutions by solving x = pinv(LHS) ∗RHS.

Results for sample size of 10:

a1 = 0.3288
a2 = 0.4503
a3 = 0.3284
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a4 = 0.4160
a5 = 0.3358
a6 = 0.3800
a7 = 0.3376
a8 = 0.3600
a9 = 0.3343
a10 = 0.4863
q2 = 0.02770
q3 = 0.0478
q4 = 0.0677
q5 = 0.0816
q6 = 0.0446
q7 = 0.0402
q8 = 0.0565
q9 = 0.0298
q10 = 0.0000

The results for a small sample size show that the flow rate increases over time and then
decreases. The results are inconclusive until we are able to run the program for a bigger
sample size of at least 100 samples.

9 Future Work

The next logical step for this research project is to apply the MATLAB program to work for
a larger sample size of 100 or greater. After that step is complete, it would be important to
analyze the plots for flow rate vs. time and for flow rate vs. area. The solutions for the n+1
time domain would be used to solve the next sequential domains. This would complete the
1D simulations and then 2D simulations could be derived.
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10 Appendix A - symbolic matrix source code

%sym matrix
%Desc r ip t i on : Generates symbol ic matrix f o r RHS blood f low equat ions
%Ryan Banci , J i l l Mercik

k=input ( ’ The sample s i z e i s : ’ ) ;

syms K;
syms E;
syms a ;
syms b ;
syms d ;

%I n l e t c o n d i t i o n s (B4 , B5 , B6)
g1=[1 z e ro s (1 , k−1) (K/2) z e r o s ( 1 , ( k−2 ) ) ] ;
g2=[0 1 z e ro s (1 , k−2) 0 (K/4) z e r o s ( 1 , ( k−3 ) ) ] ;
g3=[(−b∗K/4) 0 (b∗K/4) z e ro s (1 , k−3) (1+E∗d) ( a∗K/4)−(E∗d/2) z e r o s ( 1 , ( k−3 ) ) ] ;

%Outlet c o n d i t i o n s (B12 , B13)
g4=[ z e r o s (1 , k ) 1 z e r o s (1 , k−5) (−K/2) 0 (K/ 2 ) ] ;
g5=[ z e r o s (1 ,2∗k−2) 1 ] ;

%Middle Matrix Begins (B2 , B3)
x1 = ones (1 , k−3);
x2 = diag ( x1 , 0 ) ;

y1 = (K/4)∗ ones (1 , k−3−1);
y2 = diag ( y1 , 1 ) ;
y3 = (−K/4)∗ ones (1 , k−3−1);
y4 = diag ( y3 ,−1) ;
yout = y2 + y4 ;

j 1 = (b∗K/4)∗ ones (1 , k−3−1);
j 2 = diag ( j1 , 1 ) ;
j 3 = (−b∗K/4)∗ ones (1 , k−3−1);
j 4 = diag ( j3 ,−1) ;
j out= j2 + j4 ;

z1 = ( ( a∗K/4)−(E∗d /2))∗ ones (1 , k−3);
z2 = diag ( z1 , 0 ) ;
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z3 = (1+E∗d)∗ ones (1 , k−3−1);
z4 = diag ( z3 ,−1) ;
z5 = ((−a∗K/4)−(E∗d /2))∗ ones (1 , k−3−2);
z6 = diag ( z5 ,−2) ;
zout = z2 + z4 + z6 ;

b1 = ze ro s (2∗k−6 ,2) ; %b u f f e r z e r o s
b2 = ze ro s (2∗k−6 ,3) ;
%Middle Matrix Ends

out1 = [ x2 yout ; j out zout ] ;
out2 = [ b1 out1 b2 ] ;
LHS = [ g1 ; g2 ; g3 ; out2 ; g4 ; g5 ] %Le f t Hand Side
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11 Appendix B - code test
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